11.8 Presettable Counters
[menuju akhir]
1. Tujuan [kembali]
- Mampu Membuat Rangkaian Flip Flop Presettable Counters
- Memahami Fungsi Komponen pada Rangkaian Flip Flop Presettable Counters
- Mengetahui Prinsip Kerja dari Rangkaian Flip Flop Presettable Counters
2. Komponen [kembali]
- 7432 (Gerbang OR)
- Dual Input OR Gate – Quad Package
- Supply Voltage: 5 to 7V
- Input Voltage: 5 to 7V
- Operating temperature range -55°C to 125°C
- Available in 14-pin PDIP packag
- Gerbang AND
- Gerbang NAND
3. Dasar Teori [kembali]
Counter juga disebut pencacah atau penghitung yaitu rangkaian logika sekuensial yang digunakan untuk menghitung jumlah pulsa yang diberikan pada bagian masukan. Counter digunakan untuk berbagai operasi aritmatika, pembagi frekuensi, penghitung jarak (odometer), penghitung kecepatan (spedometer), yang pengembangannya digunakan luas dalam aplikasi perhitungan pada instrumen ilmiah, kontrol industri, komputer, perlengkapan komunikasi, dan sebagainya . Counter tersusun atas sederetan flip-flop yang dimanipulasi sedemikian rupa dengan menggunakan peta Karnough sehingga pulsa yang masuk dapat dihitung sesuai rancangan. Dalam perancangannya counter dapat tersusun atas semua jenis flip-flop, tergantung karakteristik masing-masing flip-flop tersebut. Dilihat dari arah cacahan, rangkaian pencacah dibedakan atas pencacah naik (Up Counter) dan pencacah turun (Down Counter). Pencacah naik melakukan cacahan dari kecil ke arah besar, kemudian kembali ke cacahan awal secara otomatis. Pada pencacah menurun, pencacahan dari besar ke arah kecil hingga cacahan terakhir kemudian kembali ke cacahan awal. Tiga faktor yang harus diperhatikan untuk membangun pencacah naik atau turun yaitu (1) pada transisi mana Flip-flop tersebut aktif. Transisi pulsa dari positif ke negatif atau sebaliknya, (2) output Flip-flop yang diumpankan ke Flip-flop berikutnya diambilkan dari mana. Dari output Q atau Q, (3) indikator hasil cacahan dinyatakan sebagai output yang mana. Output Q atau Q. ketiga faktor tersebut di atas dapat dinyatakan dalam persamaan EX-OR. Secara global counter terbagi atas 2 jenis, yaitu: Syncronus Counter dan Asyncronous counter. Perbedaan kedua jenis counter ini adalah pada pemicuannya. Pada Syncronous counter pemicuan flip-flop dilakukan serentak (dipicu oleh satu sumber clock) susunan flip-flopnya paralel. Sedangkan pada Asyncronous counter, minimal ada salah satu flip-flop yang clock-nya dipicu oleh keluaran flip-flop lain atau dari sumber clock lain, dan susunan flip-flopnya seri. Dengan memanipulasi koneksi flip-flop berdasarkan peta karnough atau timing diagram dapat dihasilkan counter acak, shift counter (counter sebagai fungsi register) atau juga up-down counter.
1). Synchronous CounterSyncronous counter memiliki pemicuan dari sumber clock yang sama dan susunan flip-flopnya adalah paralel. Dalam Syncronous counter ini sendiri terdapat perbedaan penempatan atau manipulasi gerbang dasarnya yang menyebabkan perbadaan waktu tunda yang di sebut carry propagation delay.
Penerapan counter dalam aplikasinya adalah berupa chip IC baik IC TTL, maupun CMOS, antara lain adalah: (TTL) 7490, 7493, 74190, 74191, 74192, 74193, (CMOS) 4017,4029,4042,dan lain-lain. Pada Counter Sinkron, sumber clock diberikan pada masing-masing input Clock dari Flip-flop penyusunnya, sehingga apabila ada perubahan pulsa dari sumber, maka perubahan tersebut akan men-trigger seluruh Flip-flop secara bersama-sama.
Tabel Kebenaran untuk Up Counter dan Down Counter Sinkron 3 bit :
Gambar rangkaian Up Counter Sinkron 3 bit
Gambar rangkaian Down Counter Sinkron 3 bit
Rangkaian Up/Down Counter Sinkron
Rangkaian Up/Down Counter merupakan gabungan dari Up Counter dan Down Counter. Rangkaian ini dapat menghitung bergantian antara Up dan Down karena adanya input eksternal sebagai control yang menentukan saat menghitung Up atau Down. Pada gambar 4.4 ditunjukkan rangkaian Up/Down Counter Sinkron 3 bit. Jika input CNTRL bernilai ‘1’ maka Counter akan menghitung naik (UP), sedangkan jika input CNTRL bernilai ‘0’, Counter akan menghitung turun (DOWN).
Gambar rangkaian Up/Down Counter Sinkron 3 bit :
2). Asyncronous counter
Seperti tersebut pada bagian sebelumnya Asyncronous counter tersusun atas flip-flop yang dihubungkan seri dan pemicuannya tergantung dari flip-flop sebelumnya, kemudian menjalar sampai flip-flop MSB-nya. Karena itulah Asyncronous counter sering disebut juga sebagai ripple-through counter. Sebuah Counter Asinkron (Ripple) terdiri atas sederetan Flip-flop yang dikonfigurasikan dengan menyambung outputnya dari yan satu ke yang lain. Yang berikutnya sebuah sinyal yang terpasang pada input Clock FF pertama akan mengubah kedudukan outpunyanya apabila tebing (Edge) yang benar yang diperlukan terdeteksi.
Output ini kemudian mentrigger inputclock berikutnya ketika terjadi tebing yang seharusnya sampai. Dengan cara ini sebuah sinyal pada inputnya akan meriplle (mentrigger input berikutnya) dari satu FF ke yang berikutnya sehingga sinyal itu mencapau ujung akhir deretan itu. Ingatlah bahwa FF T dapat membagi sinyal input dengan faktor 2 (dua). Jadi Counter dapat menghitung dari 0 sampai 2” = 1 (dengan n sama dengan banyaknya Flip-flop dalam deretan itu).
Tabel Kebenaran dari Up Counter Asinkron 3-bit
Gambar rangkaian Up Counter Asinkron 3 bit :
Timing Diagram untuk Up Counter Asinkron 3 bit :
Berdasarkan bentuk timing diagram di atas, output dari flip-flop C menjadi clock dari flip-flop B, sedangkan output dari flip-flop B menjadi clock dari flip-flop A. Perubahan pada negatif edge di masing-masing clock flip-flop sebelumnya menyebabkan flip-flop sesudahnya berganti kondisi (toggle), sehingga input-input J dan K di masing-masing flip-flop diberi nilai ”1” (sifat toggle dari JK flip-flop).
3). Counter Asinkron Mod-N
Counter Mod-N adalah Counter yang tidak 2n. Misalkan Counter Mod-6, menghitung : 0, 1, 2, 3, 4, 5. Sehingga Up Counter Mod-N akan menghitung 0 s/d N-1, sedangkan Down Counter MOD-N akan menghitung dari bilangan tertinggi sebanyak N kali ke bawah. Misalkan Down Counter MOD-9, akan menghitung : 15, 14, 13, 12, 11, 10, 9, 8, 7, 15, 14, 13,..
Gambar rangkaian Up Counter Asinkron Mod-6
Sebuah Up Counter Asinkron Mod-6, akan menghitung : 0,1,2,3,4,5,0,1,2,… Maka nilai yang tidak pernah dikeluarkan adalah 6. Jika hitungan menginjak ke-6, maka counter akan reset kembali ke 0. Untuk itu masing-masing Flip-flop perlu di-reset ke nilai ”0” dengan memanfaatkan input-input Asinkron-nya (dan ). Nilai ”0” yang akan dimasukkan di PC didapatkan dengan me-NAND kan input A dan B (ABC =110 untuk desimal 6). Jika input A dan B keduanya bernilai 1, maka seluruh flip-flop akan di-reset.
Gambar rangkaian Up/Down Counter Asinkron 3 bit
Rangkaian Up/Down Counter merupakan gabungan dari Up Counter dan Down Counter. Rangkaian ini dapat menghitung bergantian antara Up dan Down karena adanya input eksternal sebagai control yang menentukan saat menghitung Up atau Down. Pada rangkaian Up/Down Counter ASinkron, output dari flip-flop sebelumnya menjadi input clock dari flip-flop berikutnya
Prinsip Kerja Rangkaian 4 BIT Binary Counter
Sebelum perhitungan dimulai, keempat output DCBA 0000 dengan jalan dibuat Clear dalam kondisi 0 walaupun sesaat. Pada saat pulsa pertama datang dan bergerak dari 1 ke 0 maka output QA akan berubah dari 0 menjadi 1. Output QB akan tetap 0 karena signal yang masuk pada Flip-Flop "B" berubah dari 0 menjadi 1 Flip-Flop C dan C output-nya juga tidak berubah karena belum ada perubahan pada bagian output-nya. dalam keadaan inii, kondisi output DCBA = 0001. Jadi sesudah pulsa yang pertama pada output counter akan terbentuk angka 0001 dan pada saat pulsa kedua datang dan bergerak dari 1 menjadi 0, maka output QA akan berubah dari menjadi 0. Perubahan ini akan diteruskan ke Flip-Flop "B". Akibatnya karena input Flip-Flop "B" berubah dari 0 ke 1, maka output QB akan berubah dari 0 ke 1. Output Flip-Flop C dan D belum berubah karen belum ada perubahan pada bagian output-nya. Setelah pulsa kedua datang, maka keempat output DCBA akan menunjukkan DCBA = 0010, selanjutnya apabila pulsa ketiga datang output DCBA = 0011. Begitulah seterusnya sampai pulsa ke 15 datang maka keempat output-nya DCBA = 1111 dan pada saat pulsa ke 16 datang, maka seluruh output-nya DCBA akan kembali menjadi 0000. Dari uraian di atas, maka dapat ditarik kesimpulan bahwa BCD Counter 4 BIT Binary Counter hanya bisa menghitung sampai bilangan ke 16 yaitu dari mulai 0000 = 0 sampai 1111 = 15. Salah satu dari komponen Integrated (IC) yang berfungsi sebagai 4 BIT BINARY COUNTER adalah IC Tipe 54/741766 (Presettable Decode Counter adalah seperti gambar dibawah ini :
A. Jk Flip Flop
Flip flop JK beroperasi berdasarkan prinsip logika sekuensial, dimana keluarannya tidak hanya bergantung pada masukan saat ini tetapi juga pada keadaan sebelumnya. Ada dua masukan dalam JK Flip Flop Set dan Reset yang dilambangkan dengan J dan K. Ia juga memiliki dua keluaran Output dan komplemen dari Output yang dilambangkan dengan Q dan Q̅. Sirkuit internal JK Flip Flop terdiri dari kombinasi gerbang logika, biasanya gerbang NAND.
Flip flop JK terdiri dari empat kemungkinan kombinasi input: J=0, K=0; J=0, K=1; J=1, K=0; dan J=1, K=1. Kombinasi masukan ini menentukan perilaku flip flop dan keluarannya.
J=0, K=0: Dalam keadaan ini, flip flop mempertahankan keadaan sebelumnya. Itu tidak mengatur atau mengatur ulang sendiri, membuatnya stabil.
J=0, K=1: Kombinasi input ini memaksa flip flop untuk direset, menghasilkan Q=0 dan Q̅=1. Hal ini sering disebut sebagai keadaan “reset”.
J=1, K=0: Di sini, flip flop berada dalam mode set, menyebabkan Q=1 dan Q̅=0. Ini dikenal sebagai keadaan “set”.
J=1, K=1: Kombinasi ini mengaktifkan flip flop. Jika keadaan sebelumnya adalah Q=0, maka beralih ke Q=1 dan sebaliknya. Hal ini menjadikannya berharga untuk pembagian frekuensi dan aplikasi penyimpanan data.
Tabel Kebenaran JK Flip Flop
Tabel kebenaran flip flop JK menggambarkan hubungan antara input (J dan K) dan output (Q dan Q̅) dari flip flop. Berikut tabel kebenaran flip flop JK:
- Penghitung
- Register Pergeseran
- Unit Memori
- Pembagian Frekuensi
- Persamaan Karakteristik JK Flip Flop
B. Gerbang AND (AND Gate)
Gerbang AND memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang AND akan menghasilkan Keluaran (Output) Logika 1 jika semua masukan (Input) bernilai Logika 1 dan akan menghasilkan Keluaran (Output) Logika 0 jika salah satu dari masukan (Input) bernilai Logika 0. Simbol yang menandakan Operasi Gerbang Logika AND adalah tanda titik (“.”) atau tidak memakai tanda sama sekali. Contohnya : Z = X.Y atau Z = XY.
C. Gerbang OR (OR Gate)
Gerbang OR memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang OR akan menghasilkan Keluaran (Output) 1 jika salah satu dari Masukan (Input) bernilai Logika 1 dan jika ingin menghasilkan Keluaran (Output) Logika 0, maka semua Masukan (Input) harus bernilai Logika 0.
Simbol yang menandakan Operasi Logika OR adalah tanda Plus (“+”). Contohnya : Z = X + Y.
Simbol dan Tabel Kebenaran Gerbang OR (OR Gate)
D. Gerbang NOT (NOT Gate)
Gerbang NOT hanya memerlukan sebuah Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang NOT disebut juga dengan Inverter (Pembalik) karena menghasilkan Keluaran (Output) yang berlawanan (kebalikan) dengan Masukan atau Inputnya. Berarti jika kita ingin mendapatkan Keluaran (Output) dengan nilai Logika 0 maka Input atau Masukannya harus bernilai Logika 1. Gerbang NOT biasanya dilambangkan dengan simbol minus (“-“) di atas Variabel Inputnya.
Simbol dan Tabel Kebenaran Gerbang NOT (NOT Gate)
E. Gerbang NAND (NAND Gate)
Arti NAND adalah NOT AND atau BUKAN AND, Gerbang NAND merupakan kombinasi dari Gerbang AND dan Gerbang NOT yang menghasilkan kebalikan dari Keluaran (Output) Gerbang AND. Gerbang NAND akan menghasilkan Keluaran Logika 0 apabila semua Masukan (Input) pada Logika 1 dan jika terdapat sebuah Input yang bernilai Logika 0 maka akan menghasilkan Keluaran (Output) Logika 1.
Simbol dan Tabel Kebenaran Gerbang NAND (NAND Gate)
Arti NOR adalah NOT OR atau BUKAN OR, Gerbang NOR merupakan kombinasi dari Gerbang OR dan Gerbang NOT yang menghasilkan kebalikan dari Keluaran (Output) Gerbang OR. Gerbang NOR akan menghasilkan Keluaran Logika 0 jika salah satu dari Masukan (Input) bernilai Logika 1 dan jika ingin mendapatkan Keluaran Logika 1, maka semua Masukan (Input) harus bernilai Logika 0.
Simbol dan Tabel Kebenaran Gerbang NOR (NOR Gate)
- Dual Input OR Gate – Quad Package
- Supply Voltage: 5 to 7V
- Input Voltage: 5 to 7V
- Operating temperature range -55°C to 125°C
- Available in 14-pin PDIP packag
Simbol dan Tabel Kebenaran Gerbang X-OR (X-OR Gate)
4. Example [kembali]
Example 11.5 : Lihat susunan penghitung riak biner pada Gambar 11.7. Tuliskan urutan hitungannya jika awalnya di state bagian 0000. Gambar juga bentuk gelombang waktunya
5. Problem [kembali]
1. An eight-bit binary ripple UP counter with a modulus of 256 is holding the count 01111111. What will be the count after 135 clock pulses be?
1. Jumlah Gerbang NAND yang digunakan dalam rangkaian tersebut adalah...
A. 5 B. 6 C. 7 D. 8
Answer : D
2. Flip Flop yang digunakan pada rangkaian tersebut adalah...
A. JK Flip FLop
B. D Flip Flop
C. T Flip Flop
D. RS Flip Flop
Answer : A
7. Rangkaian Proteus [kembali]
1). Rangkaian Four-Bit Pressettable, Clearable Counter
8. Video [kembali]
Rangkaian Persettable Four-Bit, Clearable Counter [unduh]
Rangkaian Persettable Four-Bit Counter [unduh]
Video Simulasi Rangkaian Persettable Four-Bit, Clearable Counter [unduh]
Datasheet Gerbang AND [unduh]
Datasheet Gerbang NAND [unduh]
Datasheet Gerbang NOT [unduh]
[menuju awal]
Komentar
Posting Komentar